From: Chris Hanson Date: Mon, 12 Jun 2006 17:53:14 +0000 (+0000) Subject: Finish integrating SRFI-1 support. X-Git-Tag: 20090517-FFI~1011 X-Git-Url: https://birchwood-abbey.net/git?a=commitdiff_plain;h=14e7423b76e40b4a6cf6c98f945f789a557b43e2;p=mit-scheme.git Finish integrating SRFI-1 support. --- diff --git a/v7/src/runtime/advice.scm b/v7/src/runtime/advice.scm index 96d3621b3..911017f5c 100644 --- a/v7/src/runtime/advice.scm +++ b/v7/src/runtime/advice.scm @@ -1,9 +1,9 @@ #| -*-Scheme-*- -$Id: advice.scm,v 14.20 2003/02/14 18:28:32 cph Exp $ +$Id: advice.scm,v 14.21 2006/06/12 17:53:02 cph Exp $ Copyright 1986,1987,1988,1989,1990,1993 Massachusetts Institute of Technology -Copyright 1999,2000,2003 Massachusetts Institute of Technology +Copyright 1999,2000,2003,2006 Massachusetts Institute of Technology This file is part of MIT/GNU Scheme. @@ -338,8 +338,6 @@ USA. (define (break-both procedure) (advise-both procedure break-entry-advice break-exit-advice)) -(define break break-both) - (define unbreak-entry (specific-entry-unadviser break-entry-advice)) diff --git a/v7/src/runtime/list.scm b/v7/src/runtime/list.scm index c4974b6cb..076ff5ae2 100644 --- a/v7/src/runtime/list.scm +++ b/v7/src/runtime/list.scm @@ -1,6 +1,6 @@ #| -*-Scheme-*- -$Id: list.scm,v 14.51 2006/06/12 05:07:09 cph Exp $ +$Id: list.scm,v 14.52 2006/06/12 17:53:05 cph Exp $ Copyright 1986,1987,1988,1989,1990,1991 Massachusetts Institute of Technology Copyright 1992,1993,1994,1995,1996,2000 Massachusetts Institute of Technology @@ -318,6 +318,9 @@ USA. (if (pair? tree) (cons (walk (car tree)) (walk (cdr tree))) tree))) + +(define (car+cdr pair) + (values (car pair) (cdr pair))) ;;;; Weak Pairs @@ -406,7 +409,7 @@ USA. items*)) (begin (if (not (null? items*)) - (error:not-weak-list items 'WEAK-MEMQ)) + (error:not-weak-list items 'WEAK-DELQ!)) '())))) (locate-initial-segment (lambda (last this) @@ -417,7 +420,7 @@ USA. (trim-initial-segment (system-pair-cdr this))) (locate-initial-segment this (system-pair-cdr this))) (if (not (null? this)) - (error:not-weak-list items 'WEAK-MEMQ)))))) + (error:not-weak-list items 'WEAK-DELQ!)))))) (trim-initial-segment items))) ;;;; Standard Selectors @@ -946,138 +949,108 @@ USA. ;;;; Membership lists (define (memq item items) - (let loop ((items* items)) - (if (pair? items*) - (if (eq? (car items*) item) - items* - (loop (cdr items*))) - (begin - (if (not (null? items*)) - (error:not-list items 'MEMQ)) - #f)))) + (%member item items eq? 'MEMQ)) (define (memv item items) - (let loop ((items* items)) - (if (pair? items*) - (if (eqv? (car items*) item) - items* - (loop (cdr items*))) - (begin - (if (not (null? items*)) - (error:not-list items 'MEMV)) - #f)))) + (%member item items eqv? 'MEMV)) -(define (member item items #!optional predicate) - (let ((predicate (if (default-object? predicate) equal? predicate))) - (let loop ((items* items)) - (if (pair? items*) - (if (predicate (car items*) item) - items* - (loop (cdr items*))) - (begin - (if (not (null? items*)) - (error:not-list items 'MEMBER)) - #f))))) +(define (member item items #!optional =) + (let ((= (if (default-object? =) equal? =))) + (%member item items = 'MEMBER))) -(define (member-procedure predicate #!optional caller) +(define (member-procedure = #!optional caller) (lambda (item items) - (let loop ((items* items)) - (if (pair? items*) - (if (predicate (car items*) item) - items* - (loop (cdr items*))) + (%member item items = caller))) + +(define (add-member-procedure = #!optional caller) + (lambda (item items) + (if (%member item items = caller) + items + (cons item items)))) + +(define-integrable (%member item items = caller) + (let ((lose (lambda () (error:not-list items caller)))) + (let loop ((items items)) + (if (pair? items) + (if (= (car items) item) + items + (loop (cdr items))) (begin - (if (not (null? items*)) - (error:not-list items caller)) + (if (not (null? items)) + (lose)) #f))))) - -(define delq) -(define delv) -(define delete) - -(let-syntax - ((fast-delete-member - (sc-macro-transformer - (lambda (form environment) - (if (syntax-match? '(SYMBOL IDENTIFIER) (cdr form)) - (let ((name (cadr form)) - (predicate (close-syntax (caddr form) environment))) - `(SET! - ,name - (NAMED-LAMBDA (,name ITEM ITEMS) - (LET ((LOSE (LAMBDA () (ERROR:NOT-LIST ITEMS ',name)))) - (COND ((PAIR? ITEMS) - (LET ((HEAD (CONS (CAR ITEMS) '()))) - (LET LOOP ((ITEMS (CDR ITEMS)) (PREVIOUS HEAD)) - (COND ((PAIR? ITEMS) - (IF (,predicate (CAR ITEMS) ITEM) - (LOOP (CDR ITEMS) PREVIOUS) - (LET ((NEW (CONS (CAR ITEMS) '()))) - (SET-CDR! PREVIOUS NEW) - (LOOP (CDR ITEMS) NEW)))) - ((NOT (NULL? ITEMS)) (LOSE)))) - (IF (,predicate (CAR ITEMS) ITEM) - (CDR HEAD) - HEAD))) - ((NULL? ITEMS) ITEMS) - (ELSE (LOSE))))))) - (ill-formed-syntax form)))))) - (fast-delete-member delq eq?) - (fast-delete-member delv eqv?) - (fast-delete-member delete equal?)) - -(define (add-member-procedure predicate #!optional caller) - (let ((member (member-procedure predicate caller))) - (lambda (item items) - (if (member item items) - items - (cons item items))))) (define ((delete-member-procedure deletor predicate) item items) ((deletor (lambda (match) (predicate match item))) items)) -(define delq!) -(define delv!) -(define delete!) +(define (delq item items) + (%delete item items eq? 'DELQ)) + +(define (delv item items) + (%delete item items eqv? 'DELQ)) + +(define (delete item items #!optional =) + (let ((= (if (default-object? =) equal? =))) + (%delete item items = 'DELETE))) + +(define-integrable (%delete item items = caller) + (let ((lose (lambda () (error:not-list items caller)))) + (if (pair? items) + (let ((head (cons (car items) '()))) + (let loop ((items (cdr items)) (previous head)) + (cond ((pair? items) + (if (= (car items) item) + (loop (cdr items) previous) + (let ((new (cons (car items) '()))) + (set-cdr! previous new) + (loop (cdr items) new)))) + ((not (null? items)) + (lose)))) + (if (= (car items) item) + (cdr head) + head)) + (begin + (if (not (null? items)) + (lose)) + items)))) -(let-syntax - ((fast-delete-member! - (sc-macro-transformer - (lambda (form environment) - (if (syntax-match? '(SYMBOL IDENTIFIER) (cdr form)) - (let ((name (cadr form)) - (predicate (close-syntax (caddr form) environment))) - `(SET! - ,name - (NAMED-LAMBDA (,name ITEM ITEMS) - (LETREC - ((TRIM-INITIAL-SEGMENT - (LAMBDA (ITEMS*) - (IF (PAIR? ITEMS*) - (IF (,predicate ITEM (CAR ITEMS*)) - (TRIM-INITIAL-SEGMENT (CDR ITEMS*)) - (BEGIN - (LOCATE-INITIAL-SEGMENT ITEMS* - (CDR ITEMS*)) - ITEMS*)) - (BEGIN - (IF (NOT (NULL? ITEMS*)) - (ERROR:NOT-LIST ITEMS ',name)) - '())))) - (LOCATE-INITIAL-SEGMENT - (LAMBDA (LAST THIS) - (IF (PAIR? THIS) - (IF (,predicate ITEM (CAR THIS)) - (SET-CDR! LAST - (TRIM-INITIAL-SEGMENT (CDR THIS))) - (LOCATE-INITIAL-SEGMENT THIS (CDR THIS))) - (IF (NOT (NULL? THIS)) - (ERROR:NOT-LIST ITEMS ',name)))))) - (TRIM-INITIAL-SEGMENT ITEMS))))) - (ill-formed-syntax form)))))) - (fast-delete-member! delq! eq?) - (fast-delete-member! delv! eqv?) - (fast-delete-member! delete! equal?)) +(define (delq! item items) + (%delete! item items eq? 'DELQ!)) + +(define (delv! item items) + (%delete! item items eqv? 'DELV!)) + +(define (delete! item items #!optional =) + (let ((= (if (default-object? =) equal? =))) + (%delete! item items = 'DELETE!))) + +(define-integrable (%delete! item items = caller) + (letrec + ((trim-initial-segment + (lambda (items) + (if (pair? items) + (if (= item (car items)) + (trim-initial-segment (cdr items)) + (begin + (locate-initial-segment items (cdr items)) + items)) + (begin + (if (not (null? items)) + (lose)) + '())))) + (locate-initial-segment + (lambda (last this) + (if (pair? this) + (if (= item (car this)) + (set-cdr! last + (trim-initial-segment (cdr this))) + (locate-initial-segment this (cdr this))) + (if (not (null? this)) + (error:not-list items caller))))) + (lose + (lambda () + (error:not-list items caller)))) + (trim-initial-segment items))) ;;;; Association lists @@ -1086,149 +1059,8 @@ USA. (define-guarantee alist "association list") -(define (assq key alist) - (let loop ((alist* alist)) - (if (pair? alist*) - (begin - (if (not (pair? (car alist*))) - (error:not-alist alist 'ASSQ)) - (if (eq? (caar alist*) key) - (car alist*) - (loop (cdr alist*)))) - (begin - (if (not (null? alist*)) - (error:not-alist alist 'ASSQ)) - #f)))) - -(define (assv key alist) - (let loop ((alist* alist)) - (if (pair? alist*) - (begin - (if (not (pair? (car alist*))) - (error:not-alist alist 'ASSV)) - (if (eqv? (caar alist*) key) - (car alist*) - (loop (cdr alist*)))) - (begin - (if (not (null? alist*)) - (error:not-alist alist 'ASSV)) - #f)))) - -(define (assoc key alist #!optional predicate) - (let ((predicate (if (default-object? predicate) equal? predicate))) - (let loop ((alist* alist)) - (if (pair? alist*) - (begin - (if (not (pair? (car alist*))) - (error:not-alist alist 'ASSOC)) - (if (predicate (caar alist*) key) - (car alist*) - (loop (cdr alist*)))) - (begin - (if (not (null? alist*)) - (error:not-alist alist 'ASSOC)) - #f))))) - -(define (association-procedure predicate selector #!optional caller) - (lambda (key items) - (let loop ((items* items)) - (if (pair? items*) - (if (predicate (selector (car items*)) key) - (car items*) - (loop (cdr items*))) - (begin - (if (not (null? items*)) - (error:not-list items caller)) - #f))))) - -(define del-assq) -(define del-assv) -(define del-assoc) - -(let-syntax - ((fast-del-assoc - (sc-macro-transformer - (lambda (form environment) - (if (syntax-match? '(SYMBOL IDENTIFIER) (cdr form)) - (let ((name (cadr form)) - (predicate (close-syntax (caddr form) environment))) - `(SET! - ,name - (NAMED-LAMBDA (,name ITEM ITEMS) - (LET ((LOSE (LAMBDA () (ERROR:NOT-ALIST ITEMS ',name)))) - (COND ((PAIR? ITEMS) - (IF (NOT (PAIR? (CAR ITEMS))) (LOSE)) - (LET ((HEAD (CONS (CAR ITEMS) '()))) - (LET LOOP ((ITEMS* (CDR ITEMS)) (PREVIOUS HEAD)) - (COND ((PAIR? ITEMS*) - (IF (NOT (PAIR? (CAR ITEMS*))) (LOSE)) - (IF (,predicate (CAAR ITEMS*) ITEM) - (LOOP (CDR ITEMS*) PREVIOUS) - (LET ((NEW (CONS (CAR ITEMS*) '()))) - (SET-CDR! PREVIOUS NEW) - (LOOP (CDR ITEMS*) NEW)))) - ((NOT (NULL? ITEMS*)) (LOSE)))) - (IF (,predicate (CAAR ITEMS) ITEM) - (CDR HEAD) - HEAD))) - ((NULL? ITEMS) ITEMS) - (ELSE (LOSE))))))) - (ill-formed-syntax form)))))) - (fast-del-assoc del-assq eq?) - (fast-del-assoc del-assv eqv?) - (fast-del-assoc del-assoc equal?)) - -(define ((delete-association-procedure deletor predicate selector) key alist) - ((deletor (lambda (entry) (predicate (selector entry) key))) alist)) - -(define del-assq!) -(define del-assv!) -(define del-assoc!) - -(let-syntax - ((fast-del-assoc! - (sc-macro-transformer - (lambda (form environment) - (if (syntax-match? '(SYMBOL IDENTIFIER) (cdr form)) - (let ((name (cadr form)) - (predicate (close-syntax (caddr form) environment))) - `(SET! - ,name - (NAMED-LAMBDA (,name ITEM ITEMS) - (LETREC - ((TRIM-INITIAL-SEGMENT - (LAMBDA (ITEMS*) - (IF (PAIR? ITEMS*) - (BEGIN - (IF (NOT (PAIR? (CAR ITEMS*))) (LOSE)) - (IF (,predicate (CAAR ITEMS*) ITEM) - (TRIM-INITIAL-SEGMENT (CDR ITEMS*)) - (BEGIN - (LOCATE-INITIAL-SEGMENT ITEMS* - (CDR ITEMS*)) - ITEMS*))) - (BEGIN - (IF (NOT (NULL? ITEMS*)) (LOSE)) - '())))) - (LOCATE-INITIAL-SEGMENT - (LAMBDA (LAST THIS) - (COND ((PAIR? THIS) - (IF (NOT (PAIR? (CAR THIS))) (LOSE)) - (IF (,predicate (CAAR THIS) ITEM) - (SET-CDR! - LAST - (TRIM-INITIAL-SEGMENT (CDR THIS))) - (LOCATE-INITIAL-SEGMENT THIS - (CDR THIS)))) - ((NOT (NULL? THIS)) (LOSE))))) - (LOSE - (LAMBDA () - (ERROR:NOT-ALIST ITEMS ',name)))) - (TRIM-INITIAL-SEGMENT ITEMS))))) - (ill-formed-syntax form)))))) - (fast-del-assoc! del-assq! eq?) - (fast-del-assoc! del-assv! eqv?) - (fast-del-assoc! del-assoc! equal?)) +(define (alist-cons key datum alist) + (cons (cons key datum) alist)) (define (alist-copy alist) (let ((lose (lambda () (error:not-alist alist 'ALIST-COPY)))) @@ -1249,6 +1081,133 @@ USA. (lose))) ((null? alist) alist) (else (lose))))) + +(define (association-procedure predicate selector #!optional caller) + (lambda (key items) + (let ((lose (lambda () (error:not-list items caller)))) + (let loop ((items items)) + (if (pair? items) + (if (predicate (selector (car items)) key) + (car items) + (loop (cdr items))) + (begin + (if (not (null? items)) + (lose)) + #f)))))) + +(define ((delete-association-procedure deletor predicate selector) key alist) + ((deletor (lambda (entry) (predicate (selector entry) key))) alist)) + +(define (assq key alist) + (%assoc key alist eq? 'ASSQ)) + +(define (assv key alist) + (%assoc key alist eqv? 'ASSV)) + +(define (assoc key alist #!optional =) + (let ((= (if (default-object? =) equal? =))) + (%assoc key alist = 'ASSOC))) + +(define-integrable (%assoc key alist = caller) + (let ((lose (lambda () (error:not-alist alist caller)))) + (let loop ((alist alist)) + (if (pair? alist) + (begin + (if (not (pair? (car alist))) + (lose)) + (if (= (caar alist) key) + (car alist) + (loop (cdr alist)))) + (begin + (if (not (null? alist)) + (lose)) + #f))))) + +(define (del-assq key alist) + (%alist-delete key alist eq? 'DEL-ASSQ)) + +(define (del-assv key alist) + (%alist-delete key alist eqv? 'DEL-ASSV)) + +(define (del-assoc key alist) + (%alist-delete key alist equal? 'DEL-ASSOC)) + +(define (alist-delete key alist #!optional =) + (let ((= (if (default-object? =) equal? =))) + (%alist-delete key alist = 'ALIST-DELETE))) + +(define-integrable (%alist-delete key alist = caller) + (let ((lose (lambda () (error:not-alist alist caller)))) + (if (pair? alist) + (begin + (if (not (pair? (car alist))) + (lose)) + (let ((head (cons (car alist) '()))) + (let loop ((alist (cdr alist)) (previous head)) + (cond ((pair? alist) + (if (not (pair? (car alist))) + (lose)) + (if (= (caar alist) key) + (loop (cdr alist) previous) + (let ((new (cons (car alist) '()))) + (set-cdr! previous new) + (loop (cdr alist) new)))) + ((not (null? alist)) + (lose)))) + (if (= (caar alist) key) + (cdr head) + head))) + (begin + (if (not (null? alist)) + (lose)) + alist)))) + +(define (del-assq! key alist) + (%alist-delete! key alist eq? 'DEL-ASSQ!)) + +(define (del-assv! key alist) + (%alist-delete! key alist eqv? 'DEL-ASSV!)) + +(define (del-assoc! key alist) + (%alist-delete! key alist equal? 'DEL-ASSOC!)) + +(define (alist-delete! key alist #!optional =) + (let ((= (if (default-object? =) equal? =))) + (%alist-delete! key alist = 'ALIST-DELETE!))) + +(define-integrable (%alist-delete! item items = caller) + (letrec + ((trim-initial-segment + (lambda (items) + (if (pair? items) + (begin + (if (not (pair? (car items))) + (lose)) + (if (= (caar items) item) + (trim-initial-segment (cdr items)) + (begin + (locate-initial-segment items (cdr items)) + items))) + (begin + (if (not (null? items)) + (lose)) + '())))) + (locate-initial-segment + (lambda (last this) + (cond ((pair? this) + (if (not (pair? (car this))) + (lose)) + (if (= (caar this) item) + (set-cdr! + last + (trim-initial-segment (cdr this))) + (locate-initial-segment this (cdr this)))) + ((not (null? this)) + (lose))))) + (lose + (lambda () + (error:not-alist items caller)))) + (trim-initial-segment items))) ;;;; Keyword lists @@ -1340,11 +1299,11 @@ USA. (if (not (pair? (cdr list))) '() (let ((head (cons (car list) '()))) - (let loop ((list* (cdr list)) (previous head)) - (if (pair? (cdr list*)) - (let ((new (cons (car list*) '()))) + (let loop ((list (cdr list)) (previous head)) + (if (pair? (cdr list)) + (let ((new (cons (car list) '()))) (set-cdr! previous new) - (loop (cdr list*) new)) + (loop (cdr list) new)) head))))) (define (except-last-pair! list) diff --git a/v7/src/runtime/mit-syntax.scm b/v7/src/runtime/mit-syntax.scm index 159384039..4274c546c 100644 --- a/v7/src/runtime/mit-syntax.scm +++ b/v7/src/runtime/mit-syntax.scm @@ -1,6 +1,6 @@ #| -*-Scheme-*- -$Id: mit-syntax.scm,v 14.25 2006/02/26 03:00:43 cph Exp $ +$Id: mit-syntax.scm,v 14.26 2006/06/12 17:53:08 cph Exp $ Copyright 1989,1990,1991,2001,2002,2003 Massachusetts Institute of Technology Copyright 2004,2005,2006 Massachusetts Institute of Technology @@ -335,6 +335,7 @@ USA. (define supported-srfi-features '(SRFI-0 + SRFI-1 SRFI-2 SRFI-6 SRFI-8 diff --git a/v7/src/runtime/runtime.pkg b/v7/src/runtime/runtime.pkg index 1a8839f98..8bfc0a18d 100644 --- a/v7/src/runtime/runtime.pkg +++ b/v7/src/runtime/runtime.pkg @@ -1,6 +1,6 @@ #| -*-Scheme-*- -$Id: runtime.pkg,v 14.584 2006/06/12 05:07:18 cph Exp $ +$Id: runtime.pkg,v 14.585 2006/06/12 17:53:11 cph Exp $ Copyright 1988,1989,1990,1991,1992,1993 Massachusetts Institute of Technology Copyright 1994,1995,1996,1997,1998,1999 Massachusetts Institute of Technology @@ -932,7 +932,7 @@ USA. advice advise-entry advise-exit - break + ;;break break-both break-entry break-exit @@ -2126,7 +2126,10 @@ USA. (proper-list? list?) ;SRFI-1 add-member-procedure alist->keyword-list + alist-cons alist-copy + alist-delete + alist-delete! alist? append append! @@ -2153,6 +2156,7 @@ USA. caddr cadr car + car+cdr ;SRFI-1 cdaaar cdaadr cdaar @@ -2293,6 +2297,72 @@ USA. weak-set-cdr! xcons)) +(define-package (runtime srfi-1) + (files "srfi-1") + (parent (runtime)) + (export () + any + append-reverse + append-reverse! + break + break! + concatenate + concatenate! + count + delete-duplicates + delete-duplicates! + drop + drop-right + drop-right! + drop-while + every + filter + filter! + filter-map + find + find-tail + length+ + list-index + lset-adjoin + lset-diff+intersection + lset-diff+intersection! + lset-difference + lset-difference! + lset-intersection + lset-intersection! + lset-union + lset-union! + lset-xor + lset-xor! + lset<= + lset= + map! + map-in-order + pair-fold + pair-fold-right + pair-for-each + partition + partition! + remove + remove! + span + span! + split-at + split-at! + take + take! + take-right + take-while + take-while! + unfold + unfold-right + unzip1 + unzip2 + unzip3 + unzip4 + unzip5 + zip)) + (define-package (runtime load) (files "load") (parent (runtime)) diff --git a/v7/src/runtime/srfi-1.scm b/v7/src/runtime/srfi-1.scm new file mode 100644 index 000000000..6979f8abd --- /dev/null +++ b/v7/src/runtime/srfi-1.scm @@ -0,0 +1,1049 @@ +#| -*- Scheme -*- + +Copyright (c) 1998, 1999 by Olin Shivers. You may do as you please with +this code as long as you do not remove this copyright notice or +hold me liable for its use. Please send bug reports to shivers at +ai.mit.edu. + -Olin + +This implementation heavily modified by John Kraemer and Chris +Hanson for inclusion in MIT/GNU Scheme. + +$Id: srfi-1.scm,v 1.1 2006/06/12 17:53:14 cph Exp $ + +Copyright 2006 Massachusetts Institute of Technology + +This file is part of MIT/GNU Scheme. + +MIT/GNU Scheme is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2 of the License, or (at +your option) any later version. + +MIT/GNU Scheme is distributed in the hope that it will be useful, but +WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +General Public License for more details. + +You should have received a copy of the GNU General Public License +along with MIT/GNU Scheme; if not, write to the Free Software +Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, +USA. + +|# + +;;;; SRFI-1 list-processing library + +(declare (usual-integrations)) + +;;; [Olin's original notes] + +;;; This is a library of list- and pair-processing functions. I wrote it after +;;; carefully considering the functions provided by the libraries found in +;;; R4RS/R5RS Scheme, MIT Scheme, Gambit, RScheme, MzScheme, slib, Common +;;; Lisp, Bigloo, guile, T, APL and the SML standard basis. It is a pretty +;;; rich toolkit, providing a superset of the functionality found in any of +;;; the various Schemes I considered. + +;;; This implementation is intended as a portable reference implementation +;;; for SRFI-1. See the porting notes below for more information. + +;;; Exported: +;;; xcons tree-copy make-list list-tabulate cons* list-copy +;;; proper-list? circular-list? dotted-list? not-pair? null-list? list= +;;; circular-list length+ +;;; iota +;;; first second third fourth fifth sixth seventh eighth ninth tenth +;;; car+cdr +;;; take drop +;;; take-right drop-right +;;; take! drop-right! +;;; split-at split-at! +;;; last last-pair +;;; zip unzip1 unzip2 unzip3 unzip4 unzip5 +;;; count +;;; append! append-reverse append-reverse! concatenate concatenate! +;;; unfold fold pair-fold reduce +;;; unfold-right fold-right pair-fold-right reduce-right +;;; append-map append-map! map! pair-for-each filter-map map-in-order +;;; filter partition remove +;;; filter! partition! remove! +;;; find find-tail any every list-index +;;; take-while drop-while take-while! +;;; span break span! break! +;;; delete delete! +;;; alist-cons alist-copy +;;; delete-duplicates delete-duplicates! +;;; alist-delete alist-delete! +;;; reverse! +;;; lset<= lset= lset-adjoin +;;; lset-union lset-intersection lset-difference lset-xor +;;; lset-union! lset-intersection! lset-difference! lset-xor! +;;; lset-diff+intersection +;;; lset-diff+intersection! + +;;; In principle, the following R4RS list- and pair-processing procedures +;;; are also part of this package's exports, although they are not defined +;;; in this file: +;;; Primitives: cons pair? null? car cdr set-car! set-cdr! +;;; Non-primitives: list length append reverse cadr ... cddddr list-ref +;;; memq memv assq assv +;;; (The non-primitives are defined in this file, but commented out.) + +;;; These R4RS procedures have extended definitions in SRFI-1 and are defined +;;; in this file: +;;; map for-each member assoc + +;;; The remaining two R4RS list-processing procedures are not included: +;;; list-tail (use drop) +;;; list? (use proper-list?) + +;;; A note on recursion and iteration/reversal: +;;; Many iterative list-processing algorithms naturally compute the elements +;;; of the answer list in the wrong order (left-to-right or head-to-tail) from +;;; the order needed to cons them into the proper answer (right-to-left, or +;;; tail-then-head). One style or idiom of programming these algorithms, then, +;;; loops, consing up the elements in reverse order, then destructively +;;; reverses the list at the end of the loop. I do not do this. The natural +;;; and efficient way to code these algorithms is recursively. This trades off +;;; intermediate temporary list structure for intermediate temporary stack +;;; structure. In a stack-based system, this improves cache locality and +;;; lightens the load on the GC system. Don't stand on your head to iterate! +;;; Recurse, where natural. Multiple-value returns make this even more +;;; convenient, when the recursion/iteration has multiple state values. + +;;; Porting: +;;; This is carefully tuned code; do not modify casually. +;;; - It is careful to share storage when possible; +;;; - Side-effecting code tries not to perform redundant writes. + +;;; That said, a port of this library to a specific Scheme system might wish +;;; to tune this code to exploit particulars of the implementation. +;;; The single most important compiler-specific optimisation you could make +;;; to this library would be to add rewrite rules or transforms to: +;;; - transform applications of n-ary procedures (e.g. LIST=, CONS*, APPEND, +;;; LSET-UNION) into multiple applications of a primitive two-argument +;;; variant. +;;; - transform applications of the mapping functions (MAP, FOR-EACH, FOLD, +;;; ANY, EVERY) into open-coded loops. The killer here is that these +;;; functions are n-ary. Handling the general case is quite inefficient, +;;; requiring many intermediate data structures to be allocated and +;;; discarded. +;;; - transform applications of procedures that take optional arguments +;;; into calls to variants that do not take optional arguments. This +;;; eliminates unnecessary consing and parsing of the rest parameter. + +;;; These transforms would provide BIG speedups. In particular, the n-ary +;;; mapping functions are particularly slow and cons-intensive, and are good +;;; candidates for tuning. I have coded fast paths for the single-list cases, +;;; but what you really want to do is exploit the fact that the compiler +;;; usually knows how many arguments are being passed to a particular +;;; application of these functions -- they are usually explicitly called, not +;;; passed around as higher-order values. If you can arrange to have your +;;; compiler produce custom code or custom linkages based on the number of +;;; arguments in the call, you can speed these functions up a *lot*. But this +;;; kind of compiler technology no longer exists in the Scheme world as far as +;;; I can see. + +;;; Note that this code is, of course, dependent upon standard bindings for +;;; the R5RS procedures -- i.e., it assumes that the variable CAR is bound +;;; to the procedure that takes the car of a list. If your Scheme +;;; implementation allows user code to alter the bindings of these procedures +;;; in a manner that would be visible to these definitions, then there might +;;; be trouble. You could consider horrible kludgery along the lines of +;;; (define fact +;;; (let ((= =) (- -) (* *)) +;;; (letrec ((real-fact (lambda (n) +;;; (if (= n 0) 1 (* n (real-fact (- n 1))))))) +;;; real-fact))) +;;; Or you could consider shifting to a reasonable Scheme system that, say, +;;; has a module system protecting code from this kind of lossage. + +;;; This code does a fair amount of run-time argument checking. If your +;;; Scheme system has a sophisticated compiler that can eliminate redundant +;;; error checks, this is no problem. However, if not, these checks incur +;;; some performance overhead -- and, in a safe Scheme implementation, they +;;; are in some sense redundant: if we don't check to see that the PROC +;;; parameter is a procedure, we'll find out anyway three lines later when +;;; we try to call the value. It's pretty easy to rip all this argument +;;; checking code out if it's inappropriate for your implementation -- just +;;; nuke every call to CHECK-ARG. + +;;; On the other hand, if you *do* have a sophisticated compiler that will +;;; actually perform soft-typing and eliminate redundant checks (Rice's systems +;;; being the only possible candidate of which I'm aware), leaving these checks +;;; in can *help*, since their presence can be elided in redundant cases, +;;; and in cases where they are needed, performing the checks early, at +;;; procedure entry, can "lift" a check out of a loop. + +;;; Finally, I have only checked the properties that can portably be checked +;;; with R5RS Scheme -- and this is not complete. You may wish to alter +;;; the CHECK-ARG parameter checks to perform extra, implementation-specific +;;; checks, such as procedure arity for higher-order values. + +;;; The code has only these non-R4RS dependencies: +;;; A few calls to an ERROR procedure; +;;; Uses of the R5RS multiple-value procedure VALUES and the m-v binding +;;; RECEIVE macro (which isn't R5RS, but is a trivial macro). +;;; Many calls to a parameter-checking procedure check-arg: +;;; (define (check-arg pred val caller) +;;; (let lp ((val val)) +;;; (if (pred val) val (lp (error "Bad argument" val pred caller))))) +;;; A few uses of the LET-OPTIONAL and :OPTIONAL macros for parsing +;;; optional arguments. + +;;; Most of these procedures use the NULL-LIST? test to trigger the +;;; base case in the inner loop or recursion. The NULL-LIST? function +;;; is defined to be a careful one -- it raises an error if passed a +;;; non-nil, non-pair value. The spec allows an implementation to use +;;; a less-careful implementation that simply defines NULL-LIST? to +;;; be NOT-PAIR?. This would speed up the inner loops of these procedures +;;; at the expense of having them silently accept dotted lists. + +;;; A note on dotted lists: +;;; I, personally, take the view that the only consistent view of lists +;;; in Scheme is the view that *everything* is a list -- values such as +;;; 3 or "foo" or 'bar are simply empty dotted lists. This is due to the +;;; fact that Scheme actually has no true list type. It has a pair type, +;;; and there is an *interpretation* of the trees built using this type +;;; as lists. +;;; +;;; I lobbied to have these list-processing procedures hew to this +;;; view, and accept any value as a list argument. I was overwhelmingly +;;; overruled during the SRFI discussion phase. So I am inserting this +;;; text in the reference lib and the SRFI spec as a sort of "minority +;;; opinion" dissent. +;;; +;;; Many of the procedures in this library can be trivially redefined +;;; to handle dotted lists, just by changing the NULL-LIST? base-case +;;; check to NOT-PAIR?, meaning that any non-pair value is taken to be +;;; an empty list. For most of these procedures, that's all that is +;;; required. +;;; +;;; However, we have to do a little more work for some procedures that +;;; *produce* lists from other lists. Were we to extend these procedures to +;;; accept dotted lists, we would have to define how they terminate the lists +;;; produced as results when passed a dotted list. I designed a coherent set +;;; of termination rules for these cases; this was posted to the SRFI-1 +;;; discussion list. I additionally wrote an earlier version of this library +;;; that implemented that spec. It has been discarded during later phases of +;;; the definition and implementation of this library. +;;; +;;; The argument *against* defining these procedures to work on dotted +;;; lists is that dotted lists are the rare, odd case, and that by +;;; arranging for the procedures to handle them, we lose error checking +;;; in the cases where a dotted list is passed by accident -- e.g., when +;;; the programmer swaps a two arguments to a list-processing function, +;;; one being a scalar and one being a list. For example, +;;; (member '(1 3 5 7 9) 7) +;;; This would quietly return #f if we extended MEMBER to accept dotted +;;; lists. +;;; +;;; The SRFI discussion record contains more discussion on this topic. + +;;;; Selectors + +(define (take lis k) + (guarantee-index-fixnum k 'TAKE) + (let recur ((lis lis) (k k)) + (if (fix:> k 0) + (cons (car lis) + (recur (cdr lis) (fix:- k 1))) + '()))) + +(define (drop lis k) + (guarantee-index-fixnum k 'DROP) + (%drop lis k)) + +(define (%drop lis k) + (let iter ((lis lis) (k k)) + (if (fix:> k 0) + (iter (cdr lis) (fix:- k 1)) + lis))) + +(define (take! lis k) + (guarantee-index-fixnum k 'TAKE!) + (if (fix:> k 0) + (begin + (set-cdr! (drop lis (fix:- k 1)) '()) + lis) + '())) + +;;; TAKE-RIGHT and DROP-RIGHT work by getting two pointers into the list, +;;; off by K, then chasing down the list until the lead pointer falls off +;;; the end. + +(define (take-right lis k) + (guarantee-index-fixnum k 'TAKE-RIGHT) + (let lp ((lag lis) (lead (%drop lis k))) + (if (pair? lead) + (lp (cdr lag) (cdr lead)) + lag))) + +(define (drop-right lis k) + (guarantee-index-fixnum k 'DROP-RIGHT) + (let recur ((lag lis) (lead (%drop lis k))) + (if (pair? lead) + (cons (car lag) (recur (cdr lag) (cdr lead))) + '()))) + +;;; In this function, LEAD is actually K+1 ahead of LAG. This lets +;;; us stop LAG one step early, in time to smash its cdr to (). + +(define (drop-right! lis k) + (guarantee-index-fixnum k 'DROP-RIGHT!) + (let ((lead (%drop lis k))) + (if (pair? lead) + ;; Standard case + (let lp ((lag lis) (lead (cdr lead))) + (if (pair? lead) + (lp (cdr lag) (cdr lead)) + (begin + (set-cdr! lag '()) + lis))) + ;; Special case dropping everything -- no cons to side-effect. + '()))) + +(define (split-at x k) + (guarantee-index-fixnum k 'SPLIT-AT) + (let recur ((lis x) (k k)) + (if (fix:> k 0) + (receive (prefix suffix) (recur (cdr lis) (fix:- k 1)) + (values (cons (car lis) prefix) suffix)) + (values '() lis)))) + +(define (split-at! x k) + (guarantee-index-fixnum k 'SPLIT-AT!) + (if (fix:> k 0) + (let* ((prev (%drop x (fix:- k 1))) + (suffix (cdr prev))) + (set-cdr! prev '()) + (values x suffix)) + (values '() x))) + +;;;; Miscellaneous + +(define (length+ x) + (let lp ((x x) (lag x) (len 0)) + (if (pair? x) + (let ((x (cdr x)) + (len (fix:+ len 1))) + (if (pair? x) + (let ((x (cdr x)) + (lag (cdr lag)) + (len (fix:+ len 1))) + (if (eq? x lag) + #f + (lp x lag len))) + len)) + len))) + +(define (append-reverse rev-head tail) + (let lp ((rev-head rev-head) (tail tail)) + (if (null-list? rev-head 'APPEND-REVERSE) + tail + (lp (cdr rev-head) (cons (car rev-head) tail))))) + +(define (append-reverse! rev-head tail) + (let lp ((rev-head rev-head) (tail tail)) + (if (null-list? rev-head 'APPEND-REVERSE!) + tail + (let ((next-rev (cdr rev-head))) + (set-cdr! rev-head tail) + (lp next-rev rev-head))))) + +(define (concatenate lists) + (reduce-right append '() lists)) + +(define (concatenate! lists) + (reduce-right append! '() lists)) + +(define (count pred list1 . lists) + (if (pair? lists) + (let lp ((list1 list1) (lists lists) (i 0)) + (if (null-list? list1 'COUNT) + i + (receive (as ds) (%cars+cdrs lists) + (if (null? as) + i + (lp (cdr list1) + ds + (if (apply pred (car list1) as) + (fix:+ i 1) + i)))))) + (count-matching-items list1 pred))) + +(define (zip list1 . more-lists) + (apply map list list1 more-lists)) + +(define (unzip1 lis) + (map car lis)) + +(define (unzip2 lis) + (let recur ((lis lis)) + (if (null-list? lis 'UNZIP2) + (values lis lis) + (let ((elt (car lis))) + (receive (a b) (recur (cdr lis)) + (values (cons (car elt) a) + (cons (cadr elt) b))))))) + +(define (unzip3 lis) + (let recur ((lis lis)) + (if (null-list? lis 'UNZIP3) + (values lis lis lis) + (let ((elt (car lis))) + (receive (a b c) (recur (cdr lis)) + (values (cons (car elt) a) + (cons (cadr elt) b) + (cons (caddr elt) c))))))) + +(define (unzip4 lis) + (let recur ((lis lis)) + (if (null-list? lis 'UNZIP4) + (values lis lis lis lis) + (let ((elt (car lis))) + (receive (a b c d) (recur (cdr lis)) + (values (cons (car elt) a) + (cons (cadr elt) b) + (cons (caddr elt) c) + (cons (cadddr elt) d))))))) + +(define (unzip5 lis) + (let recur ((lis lis)) + (if (null-list? lis 'UNZIP5) + (values lis lis lis lis lis) + (let ((elt (car lis))) + (receive (a b c d e) (recur (cdr lis)) + (values (cons (car elt) a) + (cons (cadr elt) b) + (cons (caddr elt) c) + (cons (cadddr elt) d) + (cons (car (cddddr elt)) e))))))) + +(define (unfold p f g seed #!optional tail-gen) + (let recur ((seed seed)) + (if (p seed) + (if (default-object? tail-gen) '() (tail-gen seed)) + (cons (f seed) (recur (g seed)))))) + +(define (unfold-right p f g seed #!optional tail) + (let lp + ((seed seed) + (ans (if (default-object? tail) '() tail))) + (if (p seed) + ans + (lp (g seed) + (cons (f seed) ans))))) + +(define (pair-fold f zero lis1 . lists) + (if (pair? lists) + (let lp ((lists (cons lis1 lists)) (ans zero)) + (let ((tails (%cdrs lists))) + (if (null? tails) + ans + (lp tails (apply f (append! lists (list ans))))))) + (let lp ((lis lis1) (ans zero)) + (if (null-list? lis 'PAIR-FOLD) + ans + ;; Grab the cdr now, in case F SET-CDR!s LIS. + (let ((tail (cdr lis))) + (lp tail + (f lis ans))))))) + +(define (pair-fold-right f zero lis1 . lists) + (if (pair? lists) + (let recur ((lists (cons lis1 lists))) + (let ((cdrs (%cdrs lists))) + (if (null? cdrs) + zero + (apply f (append! lists (list (recur cdrs))))))) + (let recur ((lis lis1)) + (if (null-list? lis 'PAIR-FOLD-RIGHT) + zero + (f lis (recur (cdr lis))))))) + +(define (pair-for-each proc lis1 . lists) + (if (pair? lists) + (let lp ((lists (cons lis1 lists))) + (let ((tails (%cdrs lists))) + (if (pair? tails) + (begin + (apply proc lists) + (lp tails))))) + (let lp ((lis lis1)) + (if (not (null-list? lis 'PAIR-FOR-EACH)) + ;; Grab the cdr now, in case PROC SET-CDR!s LIS. + (let ((tail (cdr lis))) + (proc lis) + (lp tail)))))) + +;;; We stop when LIS1 runs out, not when any list runs out. + +(define (map! f lis1 . lists) + (if (pair? lists) + (let lp ((lis1 lis1) (lists lists)) + (if (not (null-list? lis1 'MAP!)) + (receive (heads tails) (%cars+cdrs/no-test lists) + (set-car! lis1 (apply f (car lis1) heads)) + (lp (cdr lis1) tails)))) + (pair-for-each (lambda (pair) (set-car! pair (f (car pair)))) + lis1)) + lis1) + +;;; Map F across L, and save up all the non-false results. + +(define (filter-map f lis1 . lists) + (if (pair? lists) + (let recur ((lists (cons lis1 lists))) + (receive (cars cdrs) (%cars+cdrs lists) + (if (pair? cars) + (cond ((apply f cars) => (lambda (x) (cons x (recur cdrs)))) + (else (recur cdrs))) ; Tail call in this arm. + '()))) + (let recur ((lis lis1)) + (if (null-list? lis 'FILTER-MAP) + lis + (let ((tail (recur (cdr lis)))) + (cond ((f (car lis)) => (lambda (x) (cons x tail))) + (else tail))))))) + +;;; Map F across lists, guaranteeing to go left-to-right. +;;; NOTE: Some implementations of R5RS MAP are compliant with this spec; +;;; in which case this procedure may simply be defined as a synonym for MAP. + +(define (map-in-order f lis1 . lists) + (if (pair? lists) + (let recur ((lists (cons lis1 lists))) + (receive (cars cdrs) (%cars+cdrs lists) + (if (pair? cars) + ;; Do head first, then tail. + (let ((x (apply f cars))) + (cons x (recur cdrs))) + '()))) + (let recur ((lis lis1)) + (if (null-list? lis 'MAP-IN-ORDER) + lis + ;; Do head first, then tail. + (let ((x (f (car lis)))) + (cons x + (recur (cdr lis)))))))) + +;;;; filter, remove, partition + +;;; FILTER, REMOVE, PARTITION and their destructive counterparts do not +;;; disorder the elements of their argument. + +;; This FILTER shares the longest tail of L that has no deleted elements. +;; If Scheme had multi-continuation calls, they could be made more efficient. + +;; Sleazing with EQ? makes this one faster. + +(define (filter pred lis) + (let recur ((lis lis)) + (if (null-list? lis 'FILTER) + lis + (let ((head (car lis)) + (tail (cdr lis))) + (if (pred head) + (let ((new-tail (recur tail))) ; Replicate the RECUR call so + (if (eq? tail new-tail) lis + (cons head new-tail))) + (recur tail)))))) ; this one can be a tail call. + +;;; This implementation of FILTER! +;;; - doesn't cons, and uses no stack; +;;; - is careful not to do redundant SET-CDR! writes, as writes to memory are +;;; usually expensive on modern machines, and can be extremely expensive on +;;; modern Schemes (e.g., ones that have generational GC's). +;;; It just zips down contiguous runs of in and out elts in LIS doing the +;;; minimal number of SET-CDR!s to splice the tail of one run of ins to the +;;; beginning of the next. + +(define (filter! pred lis) + (let lp ((ans lis)) + (cond ((null-list? ans 'FILTER!) ans) ; Scan looking for + ((not (pred (car ans))) (lp (cdr ans))) ; first cons of result. + + ;; ANS is the eventual answer. + ;; SCAN-IN: (CDR PREV) = LIS and (CAR PREV) satisfies PRED. + ;; Scan over a contiguous segment of the list that + ;; satisfies PRED. + ;; SCAN-OUT: (CAR PREV) satisfies PRED. Scan over a contiguous + ;; segment of the list that *doesn't* satisfy PRED. + ;; When the segment ends, patch in a link from PREV + ;; to the start of the next good segment, and jump to + ;; SCAN-IN. + (else (letrec ((scan-in (lambda (prev lis) + (if (pair? lis) + (if (pred (car lis)) + (scan-in lis (cdr lis)) + (scan-out prev (cdr lis)))))) + (scan-out (lambda (prev lis) + (let lp ((lis lis)) + (if (pair? lis) + (if (pred (car lis)) + (begin (set-cdr! prev lis) + (scan-in lis (cdr lis))) + (lp (cdr lis))) + (set-cdr! prev lis)))))) + (scan-in ans (cdr ans)) + ans))))) + +;;; Answers share common tail with LIS where possible; +;;; the technique is slightly subtle. + +(define (partition pred lis) + (let recur ((lis lis)) + (if (null-list? lis 'PARTITION) + (values lis lis) + (let ((elt (car lis)) + (tail (cdr lis))) + (receive (in out) (recur tail) + (if (pred elt) + (values (if (pair? out) (cons elt in) lis) out) + (values in (if (pair? in) (cons elt out) lis)))))))) + +;;; This implementation of PARTITION! +;;; - doesn't cons, and uses no stack; +;;; - is careful not to do redundant SET-CDR! writes, as writes to memory are +;;; usually expensive on modern machines, and can be extremely expensive on +;;; modern Schemes (e.g., ones that have generational GC's). +;;; It just zips down contiguous runs of in and out elts in LIS doing the +;;; minimal number of SET-CDR!s to splice these runs together into the result +;;; lists. + +(define (partition! pred lis) + (if (null-list? lis 'PARTITION!) + (values lis lis) + + ;; This pair of loops zips down contiguous in & out runs of the + ;; list, splicing the runs together. The invariants are + ;; SCAN-IN: (cdr in-prev) = LIS. + ;; SCAN-OUT: (cdr out-prev) = LIS. + (letrec ((scan-in (lambda (in-prev out-prev lis) + (let lp ((in-prev in-prev) (lis lis)) + (if (pair? lis) + (if (pred (car lis)) + (lp lis (cdr lis)) + (begin (set-cdr! out-prev lis) + (scan-out in-prev lis (cdr lis)))) + (set-cdr! out-prev lis))))) ; Done. + + (scan-out (lambda (in-prev out-prev lis) + (let lp ((out-prev out-prev) (lis lis)) + (if (pair? lis) + (if (pred (car lis)) + (begin (set-cdr! in-prev lis) + (scan-in lis out-prev (cdr lis))) + (lp lis (cdr lis))) + (set-cdr! in-prev lis)))))) ; Done. + + ;; Crank up the scan&splice loops. + (if (pred (car lis)) + ;; LIS begins in-list. Search for out-list's first pair. + (let lp ((prev-l lis) (l (cdr lis))) + (cond ((not (pair? l)) (values lis l)) + ((pred (car l)) (lp l (cdr l))) + (else (scan-out prev-l l (cdr l)) + (values lis l)))) ; Done. + + ;; LIS begins out-list. Search for in-list's first pair. + (let lp ((prev-l lis) (l (cdr lis))) + (cond ((not (pair? l)) (values l lis)) + ((pred (car l)) + (scan-in l prev-l (cdr l)) + (values l lis)) ; Done. + (else (lp l (cdr l))))))))) + +(define-integrable (remove pred l) (filter (lambda (x) (not (pred x))) l)) +(define-integrable (remove! pred l) (filter! (lambda (x) (not (pred x))) l)) + +;;;; Right-duplicate deletion + +;;; delete-duplicates delete-duplicates! +;;; +;;; Beware -- these are N^2 algorithms. To efficiently remove duplicates +;;; in long lists, sort the list to bring duplicates together, then use a +;;; linear-time algorithm to kill the dups. Or use an algorithm based on +;;; element-marking. The former gives you O(n lg n), the latter is linear. + +(define (delete-duplicates lis #!optional elt=) + (let ((elt= (if (default-object? elt=) equal? elt=))) + (let recur ((lis lis)) + (if (null-list? lis 'DELETE-DUPLICATES) + lis + (let* ((x (car lis)) + (tail (cdr lis)) + (new-tail (recur (delete x tail elt=)))) + (if (eq? tail new-tail) lis (cons x new-tail))))))) + +(define (delete-duplicates! lis #!optional elt=) + (let ((elt= (if (default-object? elt=) equal? elt=))) + (let recur ((lis lis)) + (if (null-list? lis 'DELETE-DUPLICATES!) + lis + (let* ((x (car lis)) + (tail (cdr lis)) + (new-tail (recur (delete! x tail elt=)))) + (if (eq? tail new-tail) lis (cons x new-tail))))))) + +(define (find pred list) + (cond ((find-tail pred list) => car) + (else #f))) + +(define (find-tail pred list) + (let lp ((list list)) + (and (not (null-list? list 'FIND-TAIL)) + (if (pred (car list)) list + (lp (cdr list)))))) + +(define (take-while pred lis) + (let recur ((lis lis)) + (if (null-list? lis 'TAKE-WHILE) + '() + (let ((x (car lis))) + (if (pred x) + (cons x (recur (cdr lis))) + '()))))) + +(define (drop-while pred lis) + (let lp ((lis lis)) + (if (null-list? lis 'DROP-WHILE) + '() + (if (pred (car lis)) + (lp (cdr lis)) + lis)))) + +(define (take-while! pred lis) + (if (or (null-list? lis 'TAKE-WHILE!) + (not (pred (car lis)))) + '() + (begin + (let lp ((prev lis) (rest (cdr lis))) + (if (pair? rest) + (let ((x (car rest))) + (if (pred x) (lp rest (cdr rest)) + (set-cdr! prev '()))))) + lis))) + +(define (span pred lis) + (let recur ((lis lis)) + (if (null-list? lis 'SPAN) + (values '() '()) + (let ((x (car lis))) + (if (pred x) + (receive (prefix suffix) (recur (cdr lis)) + (values (cons x prefix) suffix)) + (values '() lis)))))) + +(define (span! pred lis) + (if (or (null-list? lis 'SPAN!) + (not (pred (car lis)))) + (values '() lis) + (let ((suffix (let lp ((prev lis) (rest (cdr lis))) + (if (null-list? rest 'SPAN!) + rest + (let ((x (car rest))) + (if (pred x) (lp rest (cdr rest)) + (begin (set-cdr! prev '()) + rest))))))) + (values lis suffix)))) + +(define (break pred #!optional lis) + ;; This is a kludge to retain MIT/GNU Scheme's BREAK. + (if (default-object? lis) + (break-both pred) + (span (lambda (x) (not (pred x))) lis))) + +(define (break! pred lis) + (span! (lambda (x) (not (pred x))) lis)) + +(define (any pred lis1 . lists) + (if (pair? lists) + (receive (heads tails) (%cars+cdrs (cons lis1 lists)) + (and (pair? heads) + (let lp ((heads heads) (tails tails)) + (receive (next-heads next-tails) (%cars+cdrs tails) + (if (pair? next-heads) + (or (apply pred heads) + (lp next-heads next-tails)) + (apply pred heads)))))) + (and (not (null-list? lis1 'ANY)) + (let lp ((head (car lis1)) (tail (cdr lis1))) + (if (null-list? tail 'ANY) + (pred head) + (or (pred head) + (lp (car tail) (cdr tail)))))))) + +(define (every pred lis1 . lists) + (if (pair? lists) + (receive (heads tails) (%cars+cdrs (cons lis1 lists)) + (or (not (pair? heads)) + (let lp ((heads heads) (tails tails)) + (receive (next-heads next-tails) (%cars+cdrs tails) + (if (pair? next-heads) + (and (apply pred heads) + (lp next-heads next-tails)) + (apply pred heads)))))) + (or (null-list? lis1 'EVERY) + (let lp ((head (car lis1)) (tail (cdr lis1))) + (if (null-list? tail 'EVERY) + (pred head) + (and (pred head) + (lp (car tail) (cdr tail)))))))) + +(define (list-index pred lis1 . lists) + (if (pair? lists) + (let lp ((lists (cons lis1 lists)) (n 0)) + (receive (heads tails) (%cars+cdrs lists) + (and (pair? heads) + (if (apply pred heads) n + (lp tails (fix:+ n 1)))))) + (let lp ((lis lis1) (n 0)) + (and (not (null-list? lis 'LIST-INDEX)) + (if (pred (car lis)) + n + (lp (cdr lis) (fix:+ n 1))))))) + +;;;; Lists-as-sets + +;;; This is carefully tuned code; do not modify casually. +;;; - It is careful to share storage when possible; +;;; - Side-effecting code tries not to perform redundant writes. +;;; - It tries to avoid linear-time scans in special cases where constant-time +;;; computations can be performed. +;;; - It relies on similar properties from the other list-lib procs it calls. +;;; For example, it uses the fact that the implementations of MEMBER and +;;; FILTER in this source code share longest common tails between args +;;; and results to get structure sharing in the lset procedures. + +(define (%lset2<= = lis1 lis2) + (every (lambda (x) (member x lis2 =)) lis1)) + +(define (lset<= = . lists) + (or (not (pair? lists)) ; 0-ary case + (let lp ((s1 (car lists)) (rest (cdr lists))) + (or (not (pair? rest)) + (let ((s2 (car rest)) (rest (cdr rest))) + (and (or (eq? s2 s1) ; Fast path + (%lset2<= = s1 s2)) ; Real test + (lp s2 rest))))))) + +(define (lset= = . lists) + (or (not (pair? lists)) ; 0-ary case + (let lp ((s1 (car lists)) (rest (cdr lists))) + (or (not (pair? rest)) + (let ((s2 (car rest)) + (rest (cdr rest))) + (and (or (eq? s1 s2) ; Fast path + (and (%lset2<= = s1 s2) (%lset2<= = s2 s1))) ; Real test + (lp s2 rest))))))) + +(define (lset-adjoin = lis . elts) + (fold (lambda (elt ans) (if (member elt ans =) ans (cons elt ans))) + lis elts)) + +(define (lset-union = . lists) + (reduce (lambda (lis ans) ; Compute ANS + LIS. + (cond ((null? lis) ans) ; Don't copy any lists + ((null? ans) lis) ; if we don't have to. + ((eq? lis ans) ans) + (else + (fold (lambda (elt ans) (if (any (lambda (x) (= x elt)) ans) + ans + (cons elt ans))) + ans lis)))) + '() lists)) + +(define (lset-union! = . lists) + (reduce (lambda (lis ans) + ;; Splice new elts of LIS onto the front of ANS. + (cond ((null? lis) ans) ; Don't copy any lists + ((null? ans) lis) ; if we don't have to. + ((eq? lis ans) ans) + (else + (pair-fold (lambda (pair ans) + (let ((elt (car pair))) + (if (any (lambda (x) (= x elt)) ans) + ans + (begin (set-cdr! pair ans) pair)))) + ans lis)))) + '() + lists)) + +(define (lset-intersection = lis1 . lists) + (let ((lists (delete lis1 lists eq?))) ; Throw out any LIS1 vals. + (cond ((any (lambda (list) + (null-list? list 'LSET-INTERSECTION)) + lists) + '()) ; Short cut + ((null? lists) lis1) ; Short cut + (else (filter (lambda (x) + (every (lambda (lis) (member x lis =)) lists)) + lis1))))) + +(define (lset-intersection! = lis1 . lists) + (let ((lists (delete lis1 lists eq?))) ; Throw out any LIS1 vals. + (cond ((any (lambda (list) + (null-list? list 'LSET-INTERSECTION!)) + lists) + '()) ; Short cut + ((null? lists) lis1) ; Short cut + (else (filter! (lambda (x) + (every (lambda (lis) (member x lis =)) lists)) + lis1))))) + +(define (lset-difference = lis1 . lists) + (let ((lists (filter pair? lists))) ; Throw out empty lists. + (cond ((null? lists) lis1) ; Short cut + ((memq lis1 lists) '()) ; Short cut + (else (filter (lambda (x) + (every (lambda (lis) (not (member x lis =))) + lists)) + lis1))))) + +(define (lset-difference! = lis1 . lists) + (let ((lists (filter pair? lists))) ; Throw out empty lists. + (cond ((null? lists) lis1) ; Short cut + ((memq lis1 lists) '()) ; Short cut + (else (filter! (lambda (x) + (every (lambda (lis) (not (member x lis =))) + lists)) + lis1))))) + +(define (lset-xor = . lists) + (reduce (lambda (b a) ; Compute A xor B: + ;; Note that this code relies on the constant-time + ;; short-cuts provided by LSET-DIFF+INTERSECTION, + ;; LSET-DIFFERENCE & APPEND to provide constant-time short + ;; cuts for the cases A = (), B = (), and A eq? B. It takes + ;; a careful case analysis to see it, but it's carefully + ;; built in. + + ;; Compute a-b and a^b, then compute b-(a^b) and + ;; cons it onto the front of a-b. + (receive (a-b a-int-b) (lset-diff+intersection = a b) + (cond ((null? a-b) (lset-difference b a =)) + ((null? a-int-b) (append b a)) + (else (fold (lambda (xb ans) + (if (member xb a-int-b =) ans (cons xb ans))) + a-b + b))))) + '() lists)) + +(define (lset-xor! = . lists) + (reduce (lambda (b a) ; Compute A xor B: + ;; Note that this code relies on the constant-time + ;; short-cuts provided by LSET-DIFF+INTERSECTION, + ;; LSET-DIFFERENCE & APPEND to provide constant-time short + ;; cuts for the cases A = (), B = (), and A eq? B. It takes + ;; a careful case analysis to see it, but it's carefully + ;; built in. + + ;; Compute a-b and a^b, then compute b-(a^b) and + ;; cons it onto the front of a-b. + (receive (a-b a-int-b) (lset-diff+intersection! = a b) + (cond ((null? a-b) (lset-difference! b a =)) + ((null? a-int-b) (append! b a)) + (else (pair-fold (lambda (b-pair ans) + (if (member (car b-pair) a-int-b =) + ans + (begin + (set-cdr! b-pair ans) + b-pair))) + a-b + b))))) + '() lists)) + +(define (lset-diff+intersection = lis1 . lists) + (cond ((every (lambda (list) + (null-list? list 'LSET-DIFF+INTERSECTION)) + lists) + (values lis1 '())) ; Short cut + ((memq lis1 lists) (values '() lis1)) ; Short cut + (else (partition (lambda (elt) + (not (any (lambda (lis) (member elt lis =)) + lists))) + lis1)))) +(define (lset-diff+intersection! = lis1 . lists) + (cond ((every (lambda (list) + (null-list? list 'LSET-DIFF+INTERSECTION!)) + lists) + (values lis1 '())) ; Short cut + ((memq lis1 lists) (values '() lis1)) ; Short cut + (else (partition! (lambda (elt) + (not (any (lambda (lis) (member elt lis =)) + lists))) + lis1)))) + +;;;; Utilities + +;;; These little internal utilities are used by the general +;;; fold & mapper funs for the n-ary cases. It'd be nice if they got inlined. +;;; One the other hand, the n-ary cases are painfully inefficient as it is. +;;; An aggressive implementation should simply re-write these functions +;;; for raw efficiency; I have written them for as much clarity, portability, +;;; and simplicity as can be achieved. +;;; +;;; I use the dreaded call/cc to do local aborts. A good compiler could +;;; handle this with extreme efficiency. An implementation that provides +;;; a one-shot, non-persistent continuation grabber could help the compiler +;;; out by using that in place of the call/cc's in these routines. +;;; +;;; These functions have funky definitions that are precisely tuned to +;;; the needs of the fold/map procs -- for example, to minimize the number +;;; of times the argument lists need to be examined. + +(define (%cdrs lists) + ;; Return (map cdr lists). + ;; However, if any element of LISTS is empty, just abort and return '(). + (let loop ((lists lists) (cdrs '())) + (if (pair? lists) + (if (null-list? (car lists) #f) + '() + (loop (cdr lists) + (cons (cdar lists) cdrs))) + (reverse! cdrs)))) + +(define (%cars+ lists last-elt) + (let recur ((lists lists)) + (if (pair? lists) + (cons (caar lists) (recur (cdr lists))) + (list last-elt)))) + +;;; LISTS is a (not very long) non-empty list of lists. +;;; Return two lists: the cars & the cdrs of the lists. +;;; However, if any of the lists is empty, just abort and return [() ()]. + +(define (%cars+cdrs lists) + (let loop ((lists lists) (cars '()) (cdrs '())) + (if (pair? lists) + (if (null-list? (car lists) #f) + (values '() '()) + (loop (cdr lists) + (cons (caar lists) cars) + (cons (cdar lists) cdrs))) + (values (reverse! cars) (reverse! cdrs))))) + +;;; Like %CARS+CDRS, but we pass in a final elt tacked onto the end of the +;;; cars list. What a hack. + +(define (%cars+cdrs+ lists cars-final) + (let loop ((lists lists) (cars (list cars-final)) (cdrs '())) + (if (pair? lists) + (if (null-list? (car lists) #f) + (values '() '()) + (loop (cdr lists) + (cons (caar lists) cars) + (cons (cdar lists) cdrs))) + (values (reverse! cars) (reverse! cdrs))))) + +;;; Like %CARS+CDRS, but blow up if any list is empty. +(define (%cars+cdrs/no-test lists) + (let loop ((lists lists) (cars '()) (cdrs '())) + (if (pair? lists) + (loop (cdr lists) + (cons (caar lists) cars) + (cons (cdar lists) cdrs)) + (values (reverse! cars) (reverse! cdrs))))) \ No newline at end of file