From: Taylor R Campbell Date: Tue, 20 Nov 2018 06:34:54 +0000 (+0000) Subject: Fix nonsense error analysis in logit1/2+. X-Git-Tag: mit-scheme-pucked-10.1.2~16^2~14 X-Git-Url: https://birchwood-abbey.net/git?a=commitdiff_plain;h=63e1a70dde013e57bf54a7165bbd3fa4a6fc0e2a;p=mit-scheme.git Fix nonsense error analysis in logit1/2+. The Sterbenz lemma does not apply here after all, not sure why I thought it did. --- diff --git a/src/runtime/arith.scm b/src/runtime/arith.scm index ec2e183d5..a0fd44853 100644 --- a/src/runtime/arith.scm +++ b/src/runtime/arith.scm @@ -2406,7 +2406,7 @@ USA. ;;; Ill-conditioned near +/-1/2. If |p0| > 1/2 - 1/(1 + e), it may be ;;; better to compute 1/2 +/- p0 (whichever is closer to zero) and to ;;; use logit instead. This implementation gives relative error -;;; bounded by 10 eps. +;;; bounded by 34 eps. (define (logit1/2+ p-1/2) (cond ((<= (abs p-1/2) (- 1/2 (/ 1 (+ 1 (exp 1))))) @@ -2420,54 +2420,60 @@ USA. ;; = log(1 + (1/2 + p' - 1/2 + p')/(1/2 - p')) ;; = log(1 + 2 p'/(1/2 - p')) ;; - ;; Note that since p0/2 <= 1/2 <= 2 p0, 1/2 - p0 is - ;; computed exactly without error; the only error - ;; arises from division and log1p. If the error of - ;; division is d0 and the error of log1p is d1, then + ;; If the error of subtraction is d0, the error of + ;; division is d1, and the error of log1p is d2, then ;; what we compute is ;; - ;; (1 + d1) log(1 + (1 + d0) 2 p0/(1/2 - p0)) - ;; = (1 + d1) (1 + d') log(1 + 2 p0/(1/2 - p0)) - ;; = (1 + d1 + d' + d1 d') log(1 + 2 p0/(1/2 - p0)). + ;; (1 + d2) log(1 + (1 + d1) 2 p0/[(1 + d0) (1/2 - p0)]) + ;; = (1 + d2) log(1 + (1 + d') 2 p0/(1/2 - p0)) + ;; = (1 + d2) (1 + d'') log(1 + 2 p0/(1/2 - p0)) + ;; = (1 + d2 + d'' + d2 d'') log(1 + 2 p0/(1/2 - p0)), ;; - ;; where |d'| < 8|d0| by Lemma 4, since + ;; where |d'| < 2|d0 - d1| <= 4 eps by Lemma 2, and + ;; |d''| < 8|d'| < 32 eps by Lemma 4 since ;; ;; 1/e <= 1 + 2*p0/(1/2 - p0) <= e ;; ;; when |p0| <= 1/2 - 1/(1 + e). Hence the relative ;; error is bounded by ;; - ;; |d1 + d' + d1 d'| - ;; <= |d1| + |d'| + |d1 d'| - ;; <= |d1| + 8 |d0| + 8 |d1 d0| - ;; <= 9 eps + 8 eps^2. + ;; |d2 + d'' + d2 d''| + ;; <= |d2| + |d''| + |d2 d''| + ;; <= |d1| + 32 |d0| + 32 |d1 d0| + ;; <= 33 eps + 32 eps^2. ;; (log1p (/ (* 2 p-1/2) (- 1/2 p-1/2)))) (else - ;; We have a choice of computing logit(1/2 + p0) or -logit(1 - - ;; (1/2 + p0)) = -logit(1/2 - p0). It doesn't matter which - ;; way we do this: either way, since 1/2 p0 <= 1/2 <= 2 p0, + ;; We have a choice of computing logit(1/2 + p') or -logit(1 - + ;; (1/2 + p')) = -logit(1/2 - p'). It doesn't matter which + ;; way we do this: either way, since 1/2 p' <= 1/2 <= 2 p', ;; the sum and difference are computed exactly. So let's do ;; the one that skips the final negation. ;; - ;; Again, the only error arises from division and log. So the - ;; result is + ;; The result is ;; - ;; (1 + d1) log((1 + d0) (1/2 + p0)/(1/2 - p0)) - ;; = (1 + d1) (1 + log(1 + d0)/log((1/2 + p0)/(1/2 - p0))) - ;; * log((1/2 + p0)/(1/2 - p0)) - ;; = (1 + d') log((1/2 + p0)/(1/2 - p0)) + ;; (1 + d1) log((1 + d0) (1/2 + p')/[(1 + d2) (1/2 - p')]) + ;; = (1 + d1) (1 + log((1 + d0)/(1 + d2)) + ;; / log((1/2 + p')/(1/2 - p'))) + ;; * log((1/2 + p')/(1/2 - p')) + ;; = (1 + d') log((1/2 + p')/(1/2 - p')) + ;; = (1 + d') logit(1/2 + p') ;; ;; where ;; - ;; d' = d1 + log(1 + d0)/log((1/2 + p0)/(1/2 - p0)) - ;; + d1 log(1 + d0)/log((1/2 + p0)/(1/2 - p0)). + ;; d' = d1 + log((1 + d0)/(1 + d2))/logit(1/2 + p') + ;; + d1 log((1 + d0)/(1 + d2))/logit(1/2 + p'). + ;; + ;; For |p| > 1/2 - 1/(1 + e), logit(1/2 + p') > 1. Provided + ;; |d0|, |d2| < 1/4, by Lemma 3 we have + ;; + ;; |log((1 + d0)/(1 + d2))| <= 4|d0 - d2|. ;; - ;; For |p| > 1/2 - 1/(1 + e), logit(1/2 + p0) > 1. For |d0| < - ;; 1/2, |log(1 + d0)| < 2|d0|. Hence this is bounded by + ;; Hence the relative error is bounded by ;; - ;; |d'| <= |d1| + 2|d0| + 2|d0 d1| - ;; <= 3 eps + 2 eps^2. + ;; |d'| <= |d1| + 4|d0 - d2| + 4|d1| |d0 - d2| + ;; <= |d1| + 4|d0| + 4|d2| + 4|d1 d0| + 4|d1 d2| + ;; <= 9 eps + 8 eps^2. ;; (log (/ (+ 1/2 p-1/2) (- 1/2 p-1/2))))))